Computer Science 161 Popa and Weaver

Cookies

CS 161 Fall 2021 - Lecture 22

Some content adapted from materials by David Wagner or Dan Boneh

Announcements

Recording

Homework 4 is due Friday, October 22, 11:59
PM PT.

The design document draft for Project 2 is
due Friday, October 29, 11:59 PM PT.

We’'ll be holding design reviews starting next
week! Signups will most likely be posted over the
weekend. Start thinking about your designs early
— this i1s a design heavy project!

https://www.gradescope.com/courses/290298/assignments/1567616
https://cs161.org/proj2

Last time: SQL Injection and
XSS

 Demo: Squigler

Cookies

« HTTP is largely stateless

« Cookies are a way to add state. This
state helps link the same user’s
requests and helps customize websites

for the user

Cookies

A way of maintaining state in the browser

Browser GET ...

Server

l‘%
i

% /
457 Kt
§ w

@ http response contains *

Browser maintains cookie
jar with all cookies it
receives

Setting/deleting cookies by server

GET ...

Server

HTTP Header:
Set-cookie@ NAME=VALUE ;

* The first time a browser connects to a particular
web server, it has no cookies for that web server

 When the web server responds, it includes a Set-
Cookie: header that defines a cookie

« Each cookie is just a name-value pair (with some
extra metadata)

View a cookie

In @ web coNSOoIle (chrome, view->developer->deveioper toos)
type

document.cookie
to see the cookie for that site

Each name=value is one cookie.
document.cookie lists all cookies in scope for document

Cookie scope

GET ...

Server

HTTP Header:

Set-cookie@) NAME=VALUE ;
domain = (when to send) j scope
path = (when to send)

 When the browser connects to the same server later, it
automatically attaches the cookies in scope: header

containing the name and value, which the server can
use to connect related requests.

 Domain and path inform the browser about which sites
to send this cookie to

Cookie scope

GET ...

Server

HTTP Header:
Set-cookie@ NAME=VALUE ;
domain = (when to send) ;
path = (when to send)

secure = (only send over
HTTPS);

* Secure: sent over https only

https provides secure communication using TLS
(encryption and authentication)

Cookie scope

GET ...

Server

HTTP Header:

Set-cookie@ NAME=VALUE ;
domain = (when to send) ; scope
path = (when to send)
secure = (only send over SSL);
expires = (when expires) ;
HttpOnly

* Expires is expiration date

. Delete cookie by setting “expires” to date in past

* HttpOnly: cookie cannot be accessed by Javascript, but only
sent by browser (defense in depth, but does not prevent XSS)

Cookie policy

The cookie policy has two parts:

1. What scopes a URL-host name web server
Is allowed to set on a cookie

2. When the browser sends a cookie to a URL

Cookie scope

« Scope of cookie might not be the same as the
URL-host name of the web server setting it

What scope a server may set for a cookie

The browser checks if the web server may set the cookie,
and if not, it will not accept the cookie.

domain: any domain-suffix of URL-hostname, except TLD

[top-level domains,

example: host = “login.site.com” c.q. *.com’]
allowed domains disallowed domains
login.site.com user.site.com
.Site.com othersite.com
.com

= login.site.com can set cookies for all of .site.com
but not for another site or TLD

Problematic for sites like .berkeley.edu
path: can be set to anything

Examples

Web server at foo.example.com wants to set
cookie with domain:

domain Whether it will be set

(value omitted) foo.example.com (exact)

bar.foo.example.com

foo.example.com

baz.example.com

example.com yes

ample.com

.com

Credits: The Tangled Web: A Guide to Securing Modern Web Applications, by Michait Zalewski

When browser sends cookie

@ GET //URL-domain/URL-path | Sc'Ver

Cookie: NAME = VALUE

Goal: server only sees cookies in its scope

Browser sends all cookies in URL scope:

* cookie-domain is domain-suffix of URL-domain, and
* cookie-path is prefix of URL-path, and
* [protocol=HTTPS if cookie is “secure’]

When browser sends cookie

e GET //URL-domain/URL-path | Sc'Ver

Cookie: NAME = VALUE

A cookie with
domain = example.com, and
path = /some/path/

will be included on a request to
http://foo.example.com/some/path/subdirectory/hello.txt

Examples: Which cookie will be sent?

cookie 1 cookie 2

name = userid name = userid
value = ul value = u2

domain = login.site.com | domain = .site.com
path =/ path =/
non-secure non-secure

http://checkout.site.com/ cookie: userid=u2

http://login.site.com/ cookie: userid=ul, userid=u2
http://othersite.com/ cookie: none

Credits:

Examples

Web server at foo.example.com wants to set

cookie with domain:

domain

Whether it will be set, and if so,
where it will be sent to

(value omitted)

foo.example.com (exact) 0

bar.foo.example.com

Cookie not set: domain more specific than origin

foo.example.com 3
baz.example.com Cookie not set: domain mismatch
example.com o)

ample.com

Cookie not set: domain mismatch

.com

Cookie not set: domain too broad, security risk

The Tangled Web: A Guide to Securing Modern Web Applications, by Michat Zalewski

Credits:

Examples

Web server at foo.example.com wants to set

cookie with domain:

domain

Whether it will be set, and if so,
where it will be sent to

(value omitted)

foo.example.com (exact) * foo.example.com

bar.foo.example.com

Cookie not set: domain more specific than origin

foo.example.com

* foo.example.com

baz.example.com

Cookie not set: domain mismatch

example.com

* . example.com

ample.com

Cookie not set: domain mismatch

.com

Cookie not set: domain too broad, security risk

The Tangled Web: A Guide to Securing Modern Web Applications, by Michat Zalewski

Examples

cookie 1 cookie 2

name = userid name = userid
value = ul value = u2

domain = login.site.com | domain = .site.com
path =/ path =/

secure non-secure

nttp://checkout.site.com/ cookie: userid=u2

nttp://login.site.com/ cookie: userid=u2

https://login.site.com/ cookie: userid=ul; userid=u2
(arbitrary order)

Client side read/write: document.cookie

« Setting a cookie in Javascript:
document.cookie = “name=value; expires=...;

7

* Reading a cookie: alert(document.cookie)

prints string containing all cookies available for
document (based on [protocol], domain, path)

* Deleting a cookie:

document.cookie = “name=; expires= Thu, 01-Jan-
OO”

document.cookie often used to customize page in Javascript

Viewing/deleting cookies in Browser Ul

Firefox: Tools -> page info -> security -> view cookies
70 Cookies . @@Ig

Search: Clear
The following cookies are stored on your computer:
Site Cookie Name
__ google.com NID -
|| google.com SNID

|_| google.com _utmz

| google.com _utmz =

Name: _utma
Content: 173272373.288555819.1215984872.1215984872.1215984872.1

Domain: .google.com
Path: /adsense/

Send For: A T
Expires-@unday, January 17, 2038 4:00:00 P@
[Bemove Cookie \ | Remove All Cookies]

Cookie policy versus
same-origin policy

Cookie policy versus same-origin policy

« Consider Javascript on a page loaded from a
URL U

 |f a cookie is in scope for a URL U, it can be
accessed by Javascript loaded on the page
with URL U,

unless the cookie has the httpOnly flag set.

So there isn’t exact domain match as in same-
origin policy, but the cookie policy is invoked
Instead.

Examples

cookie 1 cookie 2

name = userid name = userid
value = ul value = u2

domain = login.site.com | domain = .site.com
path =/ path =/
non-secure non-secure

http://checkout.site.com/ cookie: userid=u2

http://login.site.com/ cookie: userid=ul, userid=u2
http://othersite.com/ cookie: none

JS on each of these URLs can access the corresponding
cookies even if the domains are not the same

RFC6265

- For further details on cookies, checkout
the standard RFC6265 "HT TP State
Management Mechanism”

https://tools.ietf.org/html/rfc6265

- Browsers are expected to implement this
reference, and any differences are
browser specific

