
Cookies
CS 161 Fall 2021 - Lecture 22

Some content adapted from materials by David Wagner or Dan Boneh

Announcements
• Recording
• Homework 4 is due Friday, October 22, 11:59

PM PT.
• The design document draft for Project 2 is

due Friday, October 29, 11:59 PM PT.
• We’ll be holding design reviews starting next

week! Signups will most likely be posted over the
weekend. Start thinking about your designs early
— this is a design heavy project!

https://www.gradescope.com/courses/290298/assignments/1567616
https://cs161.org/proj2

Last time: SQL Injection and
XSS

• Demo: Squigler

Cookies

• HTTP is largely stateless
• Cookies are a way to add state. This

state helps link the same user’s
requests and helps customize websites
for the user

A way of maintaining state in the browser

Cookies

Browser GET …
Server

Browser maintains cookie
jar with all cookies it
receives

http response contains

Setting/deleting cookies by server

• The first time a browser connects to a particular
web server, it has no cookies for that web server

• When the web server responds, it includes a Set-
Cookie: header that defines a cookie

• Each cookie is just a name-value pair (with some
extra metadata)

GET …

HTTP Header:
Set-cookie: NAME=VALUE ;

Server

View a cookie

In a web console (chrome, view->developer->developer tools),
type

document.cookie
to see the cookie for that site

Each name=value is one cookie.
document.cookie lists all cookies in scope for document

scope

Cookie scope

• When the browser connects to the same server later, it
automatically attaches the cookies in scope: header
containing the name and value, which the server can
use to connect related requests.

• Domain and path inform the browser about which sites
to send this cookie to

GET …

HTTP Header:
Set-cookie: NAME=VALUE ;

domain = (when to send) ;
path = (when to send)

Server

HTTP Header:
Set-cookie: NAME=VALUE ;

domain = (when to send) ;
path = (when to send)
secure = (only send over

HTTPS);

Cookie scope

GET …
Server

• Secure: sent over https only
• https provides secure communication using TLS

(encryption and authentication)

scope

Cookie scope

GET …

HTTP Header:
Set-cookie: NAME=VALUE ;

domain = (when to send) ;
path = (when to send)
secure = (only send over SSL);
expires = (when expires) ;
HttpOnly

Server

• Expires is expiration date
• Delete cookie by setting “expires” to date in past

• HttpOnly: cookie cannot be accessed by Javascript, but only
sent by browser (defense in depth, but does not prevent XSS)

Cookie policy

The cookie policy has two parts:
1. What scopes a URL-host name web server

is allowed to set on a cookie
2. When the browser sends a cookie to a URL

Cookie scope

• Scope of cookie might not be the same as the
URL-host name of the web server setting it

What scope a server may set for a cookie

domain: any domain-suffix of URL-hostname, except TLD
example: host = “login.site.com”

Þ login.site.com can set cookies for all of .site.com
but not for another site or TLD

Problematic for sites like .berkeley.edu
path: can be set to anything

allowed domains
login.site.com

.site.com

disallowed domains
user.site.com
othersite.com

.com

[top-level domains,
e.g. ‘.com’]

The browser checks if the web server may set the cookie,
and if not, it will not accept the cookie.

Examples

Content I sola t ion Logic 149

Security Policy for Cookies
We discussed the semantics of HTTP cookies in Chapter 3, but that discus-
sion left out one important detail: the security rules that must be imple-
mented to protect cookies belonging to one site from being tampered with
by unrelated pages. This topic is particularly interesting because the approach
taken here predates the same-origin policy and interacts with it in a number
of unexpected ways.

Cookies are meant to be scoped to domains, and they can’t be limited
easily to just a single hostname value. The domain parameter provided with
a cookie may simply match the current hostname (such as foo.example.com),
but this will not prevent the cookie from being sent to any eventual sub-
domains, such as bar.foo.example.com. A qualified right-hand fragment of the
hostname, such as example.com, can be specified to request a broader scope,
however.

Amusingly, the original RFCs imply that Netscape engineers wanted to
allow exact host-scoped cookies, but they did not follow their own advice.
The syntax devised for this purpose was not recognized by the descendants
of Netscape Navigator (or by any other implementation for that matter). To
a limited extent, setting host-scoped cookies is possible in some browsers by
completely omitting the domain parameter, but this method will have no
effect in Internet Explorer.

Table 9-3 illustrates cookie-setting behavior in some distinctive cases.

The only other true cookie-scoping parameter is the path prefix: Any
cookie can be set with a specified path value. This instructs the browser to send
the cookie back only on requests to matching directories; a cookie scoped to
domain of example.com and path of /some/path/ will be included on a request to

http://foo.example.com/some/path/subdirectory/hello_world.txt

This mechanism can be deceptive. URL paths are not taken into account
during same-origin policy checks and, therefore, do not form a useful secu-
rity boundary. Regardless of how cookies work, JavaScript code can simply hop
between any URLs on a single host at will and inject malicious payloads into

Table 9-3: A Sample of Cookie-Setting Behaviors

Cookie set at foo.example.com,
domain parameter is:

Scope of the resulting cookie

Non–IE browsers Internet Explorer

(value omitted) foo.example.com (exact) *.foo.example.com
bar.foo.example.com Cookie not set: domain more specific than origin
foo.example.com *.foo.example.com
baz.example.com Cookie not set: domain mismatch
example.com *.example.com
ample.com Cookie not set: domain mismatch
.com Cookie not set: domain too broad, security risk

Credits: The Tangled Web: A Guide to Securing Modern Web Applications, by Michał Zalewski

Whether it will be setdomain

Web server at foo.example.com wants to set
cookie with domain:

yes

yes

When browser sends cookie

Browser sends all cookies in URL scope:
• cookie-domain is domain-suffix of URL-domain, and
• cookie-path is prefix of URL-path, and
• [protocol=HTTPS if cookie is “secure”]

GET //URL-domain/URL-path
Cookie: NAME = VALUE

Server

Goal: server only sees cookies in its scope

When browser sends cookie

GET //URL-domain/URL-path
Cookie: NAME = VALUE

Server

A cookie with
domain = example.com, and
path = /some/path/

will be included on a request to
http://foo.example.com/some/path/subdirectory/hello.txt

Examples: Which cookie will be sent?

cookie 1
name = userid
value = u1
domain = login.site.com
path = /
non-secure

cookie 2
name = userid
value = u2
domain = .site.com
path = /
non-secure

http://checkout.site.com/
http://login.site.com/
http://othersite.com/

cookie: userid=u2
cookie: userid=u1, userid=u2
cookie: none

Examples

Content I sola t ion Logic 149

Security Policy for Cookies
We discussed the semantics of HTTP cookies in Chapter 3, but that discus-
sion left out one important detail: the security rules that must be imple-
mented to protect cookies belonging to one site from being tampered with
by unrelated pages. This topic is particularly interesting because the approach
taken here predates the same-origin policy and interacts with it in a number
of unexpected ways.

Cookies are meant to be scoped to domains, and they can’t be limited
easily to just a single hostname value. The domain parameter provided with
a cookie may simply match the current hostname (such as foo.example.com),
but this will not prevent the cookie from being sent to any eventual sub-
domains, such as bar.foo.example.com. A qualified right-hand fragment of the
hostname, such as example.com, can be specified to request a broader scope,
however.

Amusingly, the original RFCs imply that Netscape engineers wanted to
allow exact host-scoped cookies, but they did not follow their own advice.
The syntax devised for this purpose was not recognized by the descendants
of Netscape Navigator (or by any other implementation for that matter). To
a limited extent, setting host-scoped cookies is possible in some browsers by
completely omitting the domain parameter, but this method will have no
effect in Internet Explorer.

Table 9-3 illustrates cookie-setting behavior in some distinctive cases.

The only other true cookie-scoping parameter is the path prefix: Any
cookie can be set with a specified path value. This instructs the browser to send
the cookie back only on requests to matching directories; a cookie scoped to
domain of example.com and path of /some/path/ will be included on a request to

http://foo.example.com/some/path/subdirectory/hello_world.txt

This mechanism can be deceptive. URL paths are not taken into account
during same-origin policy checks and, therefore, do not form a useful secu-
rity boundary. Regardless of how cookies work, JavaScript code can simply hop
between any URLs on a single host at will and inject malicious payloads into

Table 9-3: A Sample of Cookie-Setting Behaviors

Cookie set at foo.example.com,
domain parameter is:

Scope of the resulting cookie

Non–IE browsers Internet Explorer

(value omitted) foo.example.com (exact) *.foo.example.com
bar.foo.example.com Cookie not set: domain more specific than origin
foo.example.com *.foo.example.com
baz.example.com Cookie not set: domain mismatch
example.com *.example.com
ample.com Cookie not set: domain mismatch
.com Cookie not set: domain too broad, security risk

Credits: The Tangled Web: A Guide to Securing Modern Web Applications, by Michał Zalewski

?

Whether it will be set, and if so,
where it will be sent to

domain

Web server at foo.example.com wants to set
cookie with domain:

?

?

Examples

Content I sola t ion Logic 149

Security Policy for Cookies
We discussed the semantics of HTTP cookies in Chapter 3, but that discus-
sion left out one important detail: the security rules that must be imple-
mented to protect cookies belonging to one site from being tampered with
by unrelated pages. This topic is particularly interesting because the approach
taken here predates the same-origin policy and interacts with it in a number
of unexpected ways.

Cookies are meant to be scoped to domains, and they can’t be limited
easily to just a single hostname value. The domain parameter provided with
a cookie may simply match the current hostname (such as foo.example.com),
but this will not prevent the cookie from being sent to any eventual sub-
domains, such as bar.foo.example.com. A qualified right-hand fragment of the
hostname, such as example.com, can be specified to request a broader scope,
however.

Amusingly, the original RFCs imply that Netscape engineers wanted to
allow exact host-scoped cookies, but they did not follow their own advice.
The syntax devised for this purpose was not recognized by the descendants
of Netscape Navigator (or by any other implementation for that matter). To
a limited extent, setting host-scoped cookies is possible in some browsers by
completely omitting the domain parameter, but this method will have no
effect in Internet Explorer.

Table 9-3 illustrates cookie-setting behavior in some distinctive cases.

The only other true cookie-scoping parameter is the path prefix: Any
cookie can be set with a specified path value. This instructs the browser to send
the cookie back only on requests to matching directories; a cookie scoped to
domain of example.com and path of /some/path/ will be included on a request to

http://foo.example.com/some/path/subdirectory/hello_world.txt

This mechanism can be deceptive. URL paths are not taken into account
during same-origin policy checks and, therefore, do not form a useful secu-
rity boundary. Regardless of how cookies work, JavaScript code can simply hop
between any URLs on a single host at will and inject malicious payloads into

Table 9-3: A Sample of Cookie-Setting Behaviors

Cookie set at foo.example.com,
domain parameter is:

Scope of the resulting cookie

Non–IE browsers Internet Explorer

(value omitted) foo.example.com (exact) *.foo.example.com
bar.foo.example.com Cookie not set: domain more specific than origin
foo.example.com *.foo.example.com
baz.example.com Cookie not set: domain mismatch
example.com *.example.com
ample.com Cookie not set: domain mismatch
.com Cookie not set: domain too broad, security risk

Credits: The Tangled Web: A Guide to Securing Modern Web Applications, by Michał Zalewski

Whether it will be set, and if so,
where it will be sent to

domain

Web server at foo.example.com wants to set
cookie with domain:

Examples

http://checkout.site.com/
http://login.site.com/
https://login.site.com/

cookie 1
name = userid
value = u1
domain = login.site.com
path = /
secure

cookie 2
name = userid
value = u2
domain = .site.com
path = /
non-secure

cookie: userid=u2
cookie: userid=u2
cookie: userid=u1; userid=u2

(arbitrary order)

Client side read/write: document.cookie

• Setting a cookie in Javascript:
document.cookie = “name=value; expires=…; ”

• Reading a cookie: alert(document.cookie)
prints string containing all cookies available for
document (based on [protocol], domain, path)

• Deleting a cookie:
document.cookie = “name=; expires= Thu, 01-Jan-
00”

document.cookie often used to customize page in Javascript

Viewing/deleting cookies in Browser UI

Firefox: Tools -> page info -> security -> view cookies

Cookie policy versus
same-origin policy

Cookie policy versus same-origin policy

• Consider Javascript on a page loaded from a
URL U

• If a cookie is in scope for a URL U, it can be
accessed by Javascript loaded on the page
with URL U,
unless the cookie has the httpOnly flag set.

So there isn’t exact domain match as in same-
origin policy, but the cookie policy is invoked
instead.

Examples

cookie 1
name = userid
value = u1
domain = login.site.com
path = /
non-secure

cookie 2
name = userid
value = u2
domain = .site.com
path = /
non-secure

http://checkout.site.com/
http://login.site.com/
http://othersite.com/

cookie: userid=u2
cookie: userid=u1, userid=u2
cookie: none

JS on each of these URLs can access the corresponding
cookies even if the domains are not the same

RFC6265

- For further details on cookies, checkout
the standard RFC6265 “HTTP State
Management Mechanism”

https://tools.ietf.org/html/rfc6265

- Browsers are expected to implement this
reference, and any differences are
browser specific

