
Same-origin policy
SQL Injection

CS 161 Fall 2021 - Lecture 20

Some content adapted from materials by David Wagner or Dan Boneh

Announcements

• Recording
• Discussions cancelled this week
• Midterm grades are out
• Homework 4 will be released today
• Project 2 will be released Wednesday

Quick recap: HTTP

WEB SERVERCLIENT BROWSER

HTTP REQUEST:

GET /account.html HTTP/1.1

Host: www.safebank.com

HTTP RESPONSE:
HTTP/1.0 200 OK
<HTML> . . . </HTML>

Accounts
Bill Pay
Mail
Transfers

Alice
Smith

safebank.com/account.html

Web page

web page

HTML

CSS

Javascript

Javascript

Programming language used to manipulate
web pages. It is a high-level, untyped and
interpreted language with support for objects.

Supported by all web browsers
<script>
function myFunction() {
document.getElementById("demo").innerHTML = ”Text changed.";
}
</script>

Very powerful!

Frames

• Enable embedding a page within a
page

<iframe src="URL"></iframe>

src = google.com/…
name = awglogin

outer page

inner page

Web security

A historical perspective
• The web is an example of “bolt-on security”, the

security was added as an after thought
• Originally, the web was invented to allow

physicists to share their research papers
– Only textual web pages + links to other pages;

no threat model to speak of

The web became complex
and adversarial quickly

• Then we added embedded images
– Crucial decision: a page can embed images loaded

from another web server
• Then, Javascript, dynamic HTML, AJAX, CSS,

frames, audio, video, …
• Today, a web site is a distributed application
• Attackers have various motivations

Web security is a challenge!

Desirable security goals
• Integrity: malicious web sites should not be

able to tamper with integrity of my computer or
my information on other web sites

• Confidentiality: malicious web sites should not
be able to learn confidential information from
my computer or other web sites

• Privacy: malicious web sites should not be
able to spy on me or my activities online

• Availability: attacker cannot make site
unavailable

Security on the web
• Risk #1: we don’t want a malicious site to be

able to trash my files/programs on my computer
– Browsing to awesomevids.com (or evil.com)

should not infect my computer with malware, read or
write files on my computer, etc.

Security on the web
• Risk #1: we don’t want a malicious site to be

able to trash my files/programs on my computer
– Browsing to awesomevids.com (or evil.com)

should not infect my computer with malware, read or
write files on my computer, etc.

• Defense: Javascript is sandboxed;
try to avoid security bugs in browser code;
privilege separation; automatic updates; etc.

Security on the web
• Risk #2: we don’t want a malicious site to be

able to spy on or tamper with my information or
interactions with other websites
– Browsing to evil.com should not let evil.com spy

on my emails in Gmail or buy stuff with my Amazon
account

Security on the web
• Risk #2: we don’t want a malicious site to be

able to spy on or tamper with my information or
interactions with other websites
– Browsing to evil.com should not let evil.com spy

on my emails in Gmail or buy stuff with my Amazon
account

• Defense: the same-origin policy
– A security policy grafted on after-the-fact, and

enforced by web browsers

Security on the web
• Risk #3: we want data stored on a web server

to be protected from unauthorized access

Security on the web
• Risk #3: we want data stored on a web server

to be protected from unauthorized access
• Defense: server-side security

Same-origin policy

Same-origin policy
• Each site in the browser is isolated from all others

wikipedia.org

mozilla.org

browser:

security
barrier

Same-origin policy
• Multiple pages from the same site are not isolated

wikipedia.org

wikipedia.org

browser:

No security
barrier

Origin
• Granularity of protection for same origin policy
• Origin = (protocol, hostname, port)

• It is string matching! If these match, it is same
origin, else it is not. Even though in some
cases, it is logically the same origin, if there is
no match, it is not

http://coolsite.com:81/tools/info.html

protocol hostname port

Same-origin policy

One origin should not be able to access
the resources of another origin

Javascript on one page cannot read or
modify pages from different origins

• The origin of a page is derived from the URL it
was loaded from

Same-origin policy

http://en.wikipedia.org

• The origin of a page is derived from the URL it
was loaded from

• Special case: Javascript runs with the origin of
the page that loaded it

Same-origin policy

http://en.wikipedia.org

http://www.google-analytics.com

Origins of other components
• the image is “copied” from the remote

server into the new page so it has the origin of the
embedding page (like JS) and not of the remote origin

http://upload.wikimedia.org

http://en.wikipedia.org
Image still has

http://en.wikipedia.org
origin

http://en.wikipedia.org/

Origins of other components

• iframe: origin of the URL from which the
iframe is served, and not the loading
website.

Exercises: Same origin?
Originating document Accessed document

http://wikipedia.org/a/ http://wikipedia.org/b/

http://wikipedia.org/ http://www.wikipedia.org/

http://wikipedia.org/ https://wikipedia.org/

http://wikipedia.org:81/ http://wikipedia.org:82/

http://wikipedia.org:81/ http://wikipedia.org/

except !!!

Cross-origin communication

• Allowed through a narrow API:
postMessage

• Receiving origin decides if to accept the
message based on origin (whose
correctness is enforced by browser)

postMessage
(“run this
script”,
script)

Check origin, and request!

Web security attacks

What can go bad if a web server is compromised?

• Steal sensitive data (e.g., data from many users)

• Change server data (e.g., affect users)

• Gateway to enabling attacks on clients

• Impersonation (of users to servers, or vice versa)

• Others
29

A set of common attacks
• SQL Injection

– Browser sends malicious input to server
– Bad input checking leads to malicious SQL query

• XSS – Cross-site scripting
– Attacker inserts client-side script into pages viewed

by other users, script runs in the users’ browsers
• CSRF – Cross-site request forgery

– Bad web site sends request to good web site, using
credentials of an innocent victim who “visits” site

30

